911 research outputs found

    Effect of restoration thinning on mycorrhizal fungal propagules in a northern Arizona ponderosa pine forest: Preliminary results

    Get PDF
    The inoculum potential for arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi were investigated in thinned and uncut control stands in a northern Arizona ponderosa pine forest. A corn bioassay was used to determine the relative amount of infective propagules of AM fungi, and a ponderosa pine (Pinus ponderosa) bioassay was used to determine the relative amount of infective propagules of EM fungi. Three stands of each treatment were sampled by collecting soil cores along 10 randomly chosen transects within each stand. The relative amount of infective propagules of AM fungi was significantly higher in samples collected from the thinned stands than controls. Conversely, there was a slight decrease in the relative amount of infective propagules of EM fungi in samples collected from thinned stands in comparison to the controls; however, this difference was not significant. These preliminary results indicate that population densities of AM fungi can rapidly increase following restoration thinning in northern Arizona ponderosa pine forests. This may have important implications for restoring the herbaceous understory of these forests because most understory plants depend upon AM associations for normal growth

    Bifurcations in the wake of a thick circular disk

    Get PDF
    Using DNS, we investigate the dynamics in the wake of a circular disk of aspect ratio χ = d/w = 3(where d is the diameter and w the thickness) embedded in a uniform flow of magnitude U0 perpendicular to its symmetry axis. As the Reynolds number Re = U0d/ν is increased, the flow is shown to experience an original series of bifurcations leading to chaos. The range Re ∈ [150, 218] is analysed in detail. In this range, five different non-axisymmetric regimes are successively encountered, including states similar to those previously identified in the flow past a sphere or an infinitely thin disk, as well as a new regime characterised by the presence of two distinct frequencies. A theoretical model based on the theory of mode interaction with symmetries, previously introduced to explain the bifurcations in the flow past a sphere or an infinitely thin disk (Fabre et al. in Phys Fluids 20:051702, 2008), is shown to explain correctly all these results. Higher values of the Reynolds number, up to 270, are also considered. Results indicate that the flow encounters at least four additional bifurcations before reaching a chaotic state

    Sensitivity of spherical gravitational-wave detectors to a stochastic background of non-relativistic scalar radiation

    Get PDF
    We analyze the signal-to-noise ratio for a relic background of scalar gravitational radiation composed of massive, non-relativistic particles, interacting with the monopole mode of two resonant spherical detectors. We find that the possible signal is enhanced with respect to the differential mode of the interferometric detectors. This enhancement is due to: {\rm (a)} the absence of the signal suppression, for non-relativistic scalars, with respect to a background of massless particles, and {\rm (b)} for flat enough spectra, a growth of the signal with the observation time faster than for a massless stochastic background.Comment: four pages, late

    Unified description of ballistic and diffusive carrier transport in semiconductor structures

    Full text link
    A unified theoretical description of ballistic and diffusive carrier transport in parallel-plane semiconductor structures is developed within the semiclassical model. The approach is based on the introduction of a thermo-ballistic current consisting of carriers which move ballistically in the electric field provided by the band edge potential, and are thermalized at certain randomly distributed equilibration points by coupling to the background of impurity atoms and carriers in equilibrium. The sum of the thermo-ballistic and background currents is conserved, and is identified with the physical current. The current-voltage characteristic for nondegenerate systems and the zero-bias conductance for degenerate systems are expressed in terms of a reduced resistance. For arbitrary mean free path and arbitrary shape of the band edge potential profile, this quantity is determined from the solution of an integral equation, which also provides the quasi-Fermi level and the thermo-ballistic current. To illustrate the formalism, a number of simple examples are considered explicitly. The present work is compared with previous attempts towards a unified description of ballistic and diffusive transport.Comment: 23 pages, 10 figures, REVTEX

    Coarsening of Surface Structures in Unstable Epitaxial Growth

    Full text link
    We study unstable epitaxy on singular surfaces using continuum equations with a prescribed slope-dependent surface current. We derive scaling relations for the late stage of growth, where power law coarsening of the mound morphology is observed. For the lateral size of mounds we obtain ξt1/z\xi \sim t^{1/z} with z4z \geq 4. An analytic treatment within a self-consistent mean-field approximation predicts multiscaling of the height-height correlation function, while the direct numerical solution of the continuum equation shows conventional scaling with z=4, independent of the shape of the surface current.Comment: 15 pages, Latex. Submitted to PR

    Space Vehicle Terrestrial Environment Design Requirements Guidelines

    Get PDF
    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented

    Tests of the random phase approximation for transition strengths

    Get PDF
    We investigate the reliability of transition strengths computed in the random-phase approximation (RPA), comparing with exact results from diagonalization in full 0ω0\hbar\omega shell-model spaces. The RPA and shell-model results are in reasonable agreement for most transitions; however some very low-lying collective transitions, such as isoscalar quadrupole, are in serious disagreement. We suggest the failure lies with incomplete restoration of broken symmetries in the RPA. Furthermore we prove, analytically and numerically, that standard statements regarding the energy-weighted sum rule in the RPA do not hold if an exact symmetry is broken.Comment: 11 pages, 7 figures; Appendix added with new proof regarding violation of energy-weighted sum rul

    Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr

    Get PDF
    Configuration interaction (CI) calculations in atoms with two valence electrons, carried out in the V(N-2) Hartree-Fock potential of the core, are corrected for core-valence interactions using many-body perturbation theory (MBPT). Two variants of the mixed CI+MBPT theory are described and applied to obtain energy levels and transition amplitudes for Be, Mg, Ca, and Sr

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001
    corecore